Mechanism of Action: Key Advances in Hematology Oncology

As evidenced by the 2013 annual meetings of the American Association for Cancer Research (AACR), the American Society of Clinical Oncology (ASCO), and the European Hematology Association (EHA), the pace at which scientific knowledge is influencing cancer drug development is astounding. Breakthroughs in our collective understanding of the underlying biology of solid and liquid tumors have revolutionized cancer treatment compared with as few as 5 years ago.

Introduction

As evidenced by the 2013 annual meetings of the American Association for Cancer Research (AACR), the American Society of Clinical Oncology (ASCO), and the European Hematology Association (EHA), the pace at which scientific knowledge is influencing cancer drug development is astounding. Breakthroughs in our collective understanding of the underlying biology [ Read More ]

Lisa Raedler, PhD, RPh

BCL-2 Inhibition: Hastening Cancer Cell Death

All treatments for cancer either remove or kill cancer cells. Whether it is surgery, radiation, chemotherapy, or biologic therapy, the goal is to eradicate cancer cells without destroying the patient’s healthy cells. Consider the example of microtubule inhibitors (MTIs)—paclitaxel, eribulin, ixabepilone, and others. All agents in this class affect cancer [ Read More ]

Lisa Raedler, PhD, RPh

JAK Inhibition: Blocking Cytokine Signaling in Cancer Cells

Cells in living organisms function and grow in response to cell-signaling cytokines, including various proteins, peptides, and glycoproteins. Given their central role in the body’s regulation of cell growth and immune responses, cytokines are highly appealing targets for therapeutic intervention in various diseases, including inflammatory conditions, bone disorders, metabolic diseases, [ Read More ]

Lisa Raedler, PhD, RPh

BRAF Inhibition: Halting Cancer Cell Growth

Cancers develop when mutations in critical genes alter cells’ ability to proliferate, differentiate, and die. One of these critical genes is the BRAF gene. Mutations in BRAF result in overactive, or oncogenic, BRAF protein, which ultimately enhances cell proliferation and survival.1 Because BRAF mutations are present in more than half [ Read More ]

Lisa Raedler, PhD, RPh

Other Recent Key Presentations in Oncology

Humanized Monoclonal Antibody Shows Promise in Combination Therapy in Chronic Lymphocytic Leukemia with Comorbidities Chemoimmunotherapy (CIT)—typically fludarabine, cyclophosphamide, and rituximab—is standard of care for young and physically-fit patients with chronic lymphocytic leukemia (CLL). There is no standard of care, however, for older and less fit patients with CLL. At the [ Read More ]

Lisa Raedler, PhD, RPh